温瑾,男,汉族,甘肃靖远人,中共党员,中国工业与应用数学学会会员. 2011年6月毕业于兰州大学数学与统计学院,获理学博士学位,计算数学专业,主要研究方向为偏微分方程反问题. 2011年7月进入西北师大数学与统计学院工作,西北师范大学数学博士后科研流动站出站博士后. 现为西北师范大学数学与统计学院副教授,计算数学(学术)及应用统计(专业)博士研究生导师,指导毕业学术型硕士共6人,现指导在读学术型硕士生3人,专业型硕士生5人.
2018年2月至3月,作为访问学者赴日本东京大学访问国际著名反问题研究专家山本昌宏教授;并多次赴国内高校浙江大学、山东理工大学等进行短期交流访问;多次参加国际国内会议,并作邀请报告和分组报告.
近年来主要从事微分方程(包括常微分方程和偏微分方程)反问题的研究工作,特别是分数阶扩散方程及其各类多参量反演问题的多种正则化方法研究. 迄今为止,共撰写和发表学术论文20余篇,其中近20篇论文发表在国际SCI权威杂志《Journal of Computational and Applied Mathematics》、《Mathematical Methods in the Applied Sciences》、《Physica Scripta》、《Journal of Applied Mathematics and Computing》、《Inverse Problems in Science and Engineering》、《Applied Mathematics in Science and Engineering》、《Numerical Heat Transfer, Part B: Fundamentals》、《Applied Mathematics and Computation》、《International Journal of Wavelets, Multiresolution and Information Processing》、《AIMS Mathematics》及《Inverse Problems and Imaging》等。多次担任《Inverse Problems》、《Journal of Computational and Applied Mathematics》、《Inverse Problems in Science and Engineering》及《Applied Mathematics in Science and Engineering》等高水平SCI杂志审稿人.
主持完成国家自然科学基金数学天元基金项目1项(No. 11326234),甘肃省自然科学基金1项(No. 145RJZA099),甘肃省高校科研项目1项(No. 2014A-012),西北师范大学青年教师科研能力提升计划项目1项(No. NWNU-LKQN-11-25). 作为主要参与者,参与完成国家自然科学基金面上项目及地区基金项目各1项(Nos. 10971089,11661072). 现主持国家自然科学基金项目1项(No. 12261082). 主要讲授本科生的《解析几何》、《复变函数》、《实变函数》、《高等数学》、《线性代数》等课程,研究生的《离散不适定问题的正则化理论》、《数值计算》及《统计软件与统计计算》等课程.
多次指导全国大学数数学建模竞赛,获国家二等奖2项,获省级特等奖、一等奖多项.
热忱欢迎有志于计算数学反问题方向及应用统计学研究的莘莘学子报考本人研究生!
电子邮箱: wenj@nwnu.edu.cn;wenjin0421@163.com.
部分代表作:
[1]Wen, Jin; Liu, Zhuan-Xia; Wang, Shan-Shan: A non-stationary iterative Tikhonov regularization method for simultaneous inversion in a time-fractional diffusion equation. J. Comput. Appl. Math. 426 (2023), Paper No. 115094. (SCI, T3, 高水平杂志)
[2] Wen, Jin; Wang, Shan-Shan; Liu, Zhuan-Xia:Fast spectral solver for the inversion of boundary data problem of Poisson equation in a doubly connected domain. Math Meth Appl Sci. 2022, 1-12. (SCI, T3)
[3] Wen, Jin; Ren, Xue-Juan; Wang, Shi-Juan: Simultaneous determination of source term and initial value in the heat conduction problem by modified quasi-reversibility regularization method. Numerical Heat Transfer, Part B: Fundamentals. 82(3-4)(2022), 112-127.
[4]Wen, Jin; Liu, Zhuan-Xia; Yue, Chong-Wang; Wang, Shi-Juan: Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation. J. Appl. Math. Comput. 68 (5)(2022), 3219–3250.
[5]Wen, Jin; Liu, Zhuan-Xia; Wang, Shan-Shan: Conjugate gradient method for simultaneous identification of the source term and initial data in a time-fractional diffusion equation. Appl. Math. Sci. Eng. 30(1) (2022), 324–338. (SCI, T3)
[6]Wen, Jin; Huang, Li-Ming; Liu, Zhuan-Xia: A modified quasi-reversibility method for inverse source problem of Poisson equation. Inverse Probl. Sci. Eng. 29(12) (2021), 2098–2109. (SCI, T3)
[7]Wen, Jin; Cheng, Jun-Feng: The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation. Inverse Probl. Sci. Eng. 26(7) (2018), 925–941. (SCI, T3)
[8]Wen, Jin; Ren, Xue-Juan; Wang, Shi-Juan: Simultaneous determination of source term and the initial value in the space-fractional diffusion problem by a novel modified quasi-reversibility regularization method. Physica Scripta, 98(2)(2023), 025201.
[9] Wen, Jin; Yue, Chong-Wang; Liu, Zhuan-Xia ; Wang, Shi-Juan:Fractional Tikhonov regularization method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, Rocky Mountain Journal of Mathematics, preprint. (SCI, T3)
[10]温瑾,任学娟,同时确定热传导方程初值和源项的磨光化方法, 西北师范大学学报(自然科学版), 56(4)(2020), 8-14.
[11]温瑾,程秀芬,逆热传导问题的一种新型无网格方法, 西北师范大学学报(自然科学版), 54(5)(2018), 5-9+49.
[12]Wen, Jin; Yamamoto, Masahiro; Wei, Ting: Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem. Inverse Probl. Sci. Eng. 21 (3) (2013) , 485–499. (SCI, T3)
[13] Wen, Jin: A meshless method for reconstructing the heat source and partial initial temperature in heat conduction. Inverse Probl. Sci. Eng. 19 (7)(2011), 1007–1022. (SCI, T3)
[14]Liu, Chan; Wen, Jin; Zhang, Zhidong: Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Probl.Imaging. 14 (6)(2020), 1001–1024. (SCI, T2)
[15]Xu, Man; Ma, Ruyun; Wen, Jin: Lower and upper solutions method for a problem of an elastic beam whose one end is simply supported and the other end is sliding clamped. Turkish J. Math. 42(3) (2018) , 1018–1030.
[16]Wang, Jinxiang; Ma, Ruyun; Wen, Jin: S-shaped connected component for nonlinear fourth-order problem of elastic beam equation. J. Funct. Spaces. 2017, Art.ID 1069491, 8 pp.
[17]Xiong, Xiangtuan; Li, Jinmei; Wen, Jin: Some novel linear regularization methods for a deblurring problem. Inverse Probl.Imaging. 11(2) (2017), 403–426. (SCI, T2)
[18]Xiong, Xiangtuan; Cheng, Qiang; Kong, Yanfeng; Wen, Jin: A wavelet method for numerical fractional derivative with noisy data. Int. J. Wavelets Multiresolut.Inf. Process. 14 (5)(2016), 1650038, 15 pp.
[19]Xiong, Xiangtuan; Cao, Xiaoxiao; He, Shumei; Wen, Jin: A modified regularization method for a Cauchy problem for heat equation on a two-layer sphere domain. Appl. Math. Comput. 290 (2016), 240–249.