应学院邀请,厦门大学谭绍滨教授将来学院作学术报告。
报告题目:On root graded Lie algebras and elliptic Lie algebras
报告摘要:Root graded Lie algebras were first studied by Berman-Moody in 1990’s, the elliptic Lie algebras are root graded Lie algebras, and the elliptic Lie algebras of maximal type are also the nullity two extended affine Lie algebras, which are generalization of the affine Kac-Moody Lie algebras. It is well known that the restricted modules for any untwisted affine Kac-Moody Lie algebra are isomorphic to the modules for the associated affine vertex algebra, while the restricted modules for the twisted affine Kac-Moody Lie algebra are isomorphic to the twisted modules for the affine vertex algebra. In this talk we will recall the classification of elliptic Lie algebras of maximal type, and the notion of γvertex algebra and equivariantφcoordinated quasi-modules for vertex algebras. I will then claim that there exist a vertex algebra V associated with any elliptic Lie algebra of maximal type and an automorphism group G of V equipped with a linear characterχ, such that the category of restricted modules for the elliptic Lie algebra is isomorphic to the category of (G, χ)-equivariant χ-coordinated quasi modules for the vertex algebra V.
报告时间:2024年11月29日16:00
报告地点:致勤楼D08
邀 请 人:乔虎生教授
届时欢迎广大师生参与交流!
报告人简介
谭绍滨,厦门大学特聘教授, 博士生导师。本科毕业于湘潭大学,硕士毕业于北京应用物理与计算数学研究所,博士毕业于加拿大Saskatchewan大学,加拿大Toronto大学Fields数学研究所博士后。现任厦门大学数学科学学院院长、国家天元数学东南中心执委会主任。曾任厦门大学教务处处长、国际合作与交流处处长、厦门大学校长助理,担任第六、七届国务院学位委员会学科评议组成员,教育部高等学校教学指导委员会委员,享受国务院政府特殊津贴。担任”Acta Mathematica Sinica”、《数学进展》、“Journal of Mathematical Study”等学术期刊编委。曾获国防科工委科技进步一等奖、宝钢优秀教师奖,现主持国家自然科学基金委重点项目。
甘肃省数学与统计学基础学科研究中心
数学与统计学院
2024年11月27日