李永祥老师简介

文章来源:管理员发布日期:2020-06-16浏览次数:17079

       


 李永祥,甘肃秦安人,生于1963年,1984年本科毕业于西北师范大学数学系,1988于四川大学获硕士学位,2004于兰州大学获博士学位。现为西北师范大学二级教授,博士生导师,甘肃省数学会副理事长,美国《Math. Reviews》评论员,欧洲《Zentralblatt Math.》评论员,主要从事非线性泛函分析与非线性微分方程的研究,发表学术论文180余篇,其中SCI刊物论文100余篇。先后主持4项国家自然科学基金项目及4项甘肃省自然科学基金项目的研究。主持完成的科研成果获甘肃省自然科学奖二等奖2次,甘肃省高校科技进奖4次,1997年获甘肃省高校青年教师成才奖,2005年入选甘肃省“555”创新人才工程,2008年被评为西北师范大学教学名师,2010年入选甘肃省领军人才,曾任西北师范大学数学与信息科学学院副院长、数学与统计学院副院长、院长等职务。


主持的省部级以上的科研项目

[1] 弹性梁振动方程的稳定性及相关问题研究, 国家自然科学基金项目(12061062), 2021.01-2024.12.

[2] 几类完全形式的非线性边值问题解的存在性及多重性, 国家自然科学基金项目(11661071), 2017.01-2020.12.

[3] 抽象时滞发展方程周期解的存在性及渐近性态, 国家自然科学基金项目(11261053), 2013.01-2016.12.

[4] 几类非自伴微分方程周期解的存在性及渐近性态, 国家自然科学基金项目(10871160), 2009.01-2011.12.

[5] Banach空间脉冲发展方程的整体解与周期解, 甘肃省自然科学基金资助项目(1208RJZA129), 2013.01-2015.12.

[6] 抽象发展方程周期解的存在性及渐近性态, 甘肃省自然科学基金项目(0710RJZA103), 2008.01-2010.12.

[7] 某些非自伴微分方程的周期解, 甘肃省自然科学基金项目(ZS031-A25-003-Z), 2004.01-2006.12.

[8] Banach空间半线性发展方程的整体解与周期解, 甘肃省自然科学基金项目(ZS991-A25-007-Z), 1999.01-2001.12.


科研获奖

[1] 李永祥, 陈鹏玉等. 抽象半线性发展方程的可解性,甘肃省自然科学奖二等奖, 2017-2-003-R1, 2018.

[2] 李永祥, 伏升茂等. 某些非自伴微分方程的周期解, 甘肃省自然科学奖二等奖, 2009-Z2-003-R12010.

[3] 李永祥, 杨和等. 某些非线性微分方程的周期解及相关问题研究,甘肃省高等学校科技进步一等奖, 2012.

[4] 李永祥, 伏升茂等. 几类非线性微分方程的可解性研究, 甘肃省高等学校科技进步奖二等奖, 2008.

[5] 李永祥, 伏升茂. 几类非线性边值问题解的存在性,甘肃省高等学校科技进步奖二等奖, 2006.

[6] 李永祥, 叶国菊等. 几类微分方程解的存在性及非绝对积分研究, 甘肃省高等学校科技进步奖三等奖, 2004.


代表性学术论文

[1] Yongxiang Li, Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball, Mediterranean Journal of Mathematics, 2020, 17(6): No. 176.

[2] Yongxiang Li, Yabing Gao. Existence and uniqueness results for the bending elastic beam equations, Applied Mathematics Letters, 2019, 95: 72-77.

[3] Yongxiang Li. Positive radial solutions for elliptic equations with nonlinear gradient terms in an annulus, Complex Variables and Elliptic Equations, 2018, 63(2): 171-187.

[4] Yongxiang Li, Yanhong Li. Positive Solutions of a Third-Order Boundary Value Problem with Full Nonlinearity, Mediterranean Journal of Mathematics, 2017, 14(3): No. 128.

[5] Yongxiang Li. Existence of positive solutions for the cantilever beam equations with fully nonlinear terms, Nonlinear Analysis: Real World Applications, 2016, 27: 221-237.

[6] Yongxiang Li, Positive solutions for second order boundary value problems with derivative terms, Mathematische Nachrichten, 2016, 289(16): 2058–2068.  

[7] Yongxiang Li, Huanhuan Zhang. Existence of positive radial solutions for the elliptic equations on an exterior domain, Ann. Polon. Math. 2016, 116 (1): 67-78.

[8] Yongxiang Li. Existence and asymptotic stability of periodic solution for evolution equations with delays. J. Functional Analysis, 2011, 261(5): 1309-1324.

[9] Yongxiang Li, Hongxia Fan. Existence of positive periodic solutions for higher order ordinary differential equations. Comput. Math. Appl. 2011, 62(4): 1715-1722.

[10] Yongxiang Li, He Yang. Existence and uniqueness of periodic solutions for odd-order ordinary differential equations. Ann. Polon. Math. 2011,100 (2): 105-114.

[11] Yongxiang Li. Positive periodic solutions for fully third-order ordinary differential equations. Comput. Math. Appl. 2010, 59(11): 3464-3471.

[12] Yongxiang Li, Jia Mu. Odd periodic solutions for 2nth-order ordinary differential equations. Nonlinear Analysis, 2010, 73(10): 3268-3277.

[13] Yongxiang Li. A monotone iterative technique for solving the bending elastic beam equations. Applied Math. Comput. 2010, 217(5), 2200-2208.

[14] Yongxiang Li. Existence and uniqueness of periodic solution for a class of semilinear evolution equations. J. Math. Anal. Appl. 2009, 349(1): 226-234.

[15] Yongxiang Li. On the existence and uniqueness for higher order periodic boundary value problems. Nonlinear Analysis, 2009, 70(2): 711-718.

[16] Yongxiang Li. Maximum principles and the method of upper and lower solutions for time-periodic problems of the telegraph equations. J. Math. Anal. Appl. 2007, 327(2): 997-1009.

[17] Yongxiang Li, Liu Zhe. Monotone iterative technique for addressing impulsive integro- differential equations in Banach spaces. Nonlinear Analysis, 2007, 66(1): 83-92.

[18] Yongxiang Li. Multiply sign-changing solutions for fourth-order nonlinear boundary value problems. Nonlinear Analysis, 2007, 67(2): 601-608.

[19] Yongxiang Li. On the existence of positive solutions for the bending elastic beam equations. Applied Math. Comput. , 2007, 189(1): 821-827.

[20] Yongxiang Li. Existence and uniqueness for higher order periodic boundary value problems under spectral separation conditions. J. Math. Anal. Appl. 2006, 322(2): 530-539.

[21] Yongxiang Li. On the existence and nonexistence of positive solutions for Sturm-Liouville boundary value problems. J. Math. Anal. Appl. 2005, 304(1), 74-86.

[22] Yongxiang Li. Two-parameter nonresonance condition for the existence of fourth-order boundary value problems. J. Math. Anal. Appl. 2005, 308(1), 121-128.

[23] Yongxiang Li. Oscillatory periodic solutions of nonlinear second order ordinary differential equations. Acta Math. Sinica (English Ser.), 2005, 21(3): 491-496.

[24] Yongxiang Li. Abstract existence theorems of positive solutions for nonlinear boundary value problems. Nonlinear Analysis, 2004, 57(3), 211-227.

[25] Yongxiang Li. Positive solutions of higher order periodic boundary value problems. Comput. Math. Appl. 2004, 48(1), 153-161.

[26] Yongxiang Li. Positive periodic solutions of first and second order ordinary  differential equations, Chinese Ann. Math. (Ser. B), 2004, 25(3), 413-420.

[27] Yongxiang Li. Positive solutions of fourth-order periodic boundary value problems, Nonlinear Analysis, 2003, 54(6), 1069-1078.

[28] Yongxiang Li. Positive doubly periodic solutions of nonlinear telegraph  equations. Nonlinear Analysis, 2003, 55(3), 245-254.

[29] Yongxiang Li. Positive solutions of fourth-order boundary value problems with two parameters. J. Math. Anal. Appl. 2003, 281(2), 477-484.

[30] Yongxiang Li. Positive solutions of second-order boundary value problems with sign-changing nonlinear terms. J. Math. Anal. Appl. 2003, 282(1), 232-240.

[31] 李永祥, 刘爱兰. 非线性边值问题正解存在性的特征值判据, 数学学报, 2017, 60(4): 631-640.

[32]李永祥. 含时滞导数项的二阶中立型泛函微分方程的正周期解, 数学学报, 2014, 57(3): 505-516.

[33]李永祥, 杨和. 用椭圆描述的四阶边值问题的两参数非共振条件. 数学物理学报, 2010, 30A(1): 239-244.

[34]李永祥.电报方程双周期解的极大值原理与强正性估计及应用. 数学学报, 2007, 50(4): 895-908.

[35]李永祥. 抽象半线性发展初值问题解的存在性. 数学学报, 2005,  48(6), 1089-1094.

[36]李永祥. 四阶边值问题正解的存在性与多解性. 应用数学学报, 2003, 26(1): 109-116.

[37]李永祥. 二阶非线性常微分方程的正周期解. 数学学报, 2002, 45(3): 481-488.

[38]李永祥. Banach空间半线性发展方程的周期解. 数学学报, 1998, 41(3): 629-636 .

[39]李永祥. 关于抽象强阻尼波方程的指数稳定性. 数学年刊, 1997, 18A(3): 299-306.

[40]李永祥. 抽象半线性发展方程的正解及其应用. 数学学报, 1996, 39(5): 666-672.