刘仲奎老师简介

文章来源:管理员发布日期:2017-03-19浏览次数:16283

 

        刘仲奎中国民主同盟盟员,现任甘肃省政协常委、甘肃省人大常委、民盟甘肃省第十四届委员会副主任委员、西北师范大学校长、教授、博士生导师。主要从事环的同调理论以及半群代数理论方面的研究与教学工作。曾经解决了前苏联、德国、加拿大数学家提出的五个公开问题。已在《Journal of Algebra》、《Journal of Pure and Applied Algebra》、《Communications in Algebra》等刊物上发表论文200余篇。入选中组部“万人计划”第二批百千万工程领军人才;主持国家自然科学基金项目三项;主持完成教育部高等学校骨干教师资助计划项目1项;主持甘肃省自然科学基金项目3项;参与教育部重大科技项目培育项目1项;参与完成国家自然科学基金项目2(第二完成人)。在科学出版社出版专著《A Homological approach to the Theory of Monoids(Javed Ahsan教授合著)、《半群的S-系理论》两部,在高等教育出版社出版面向21世纪课程教材《高等代数》一部。1994年被评为甘肃省劳动模范;1995年被评为全国先进工作者;1996年享受政府特殊津贴;1997年被评为国家“中青年有突出贡献专家”,同年入选国家 “百千万人才工程”第一、二层次; 2010年入选甘肃省领军人才第一层次。
 

主要简历: 


1989年9月至1992年7月在兰州大学攻读博士学位。 
1992年9月至1993年在西北师范大学数学系任讲师。 
1994年破格晋升为教授,至今在西北师范大学数学系任教。 
2000年9月任西北师范大学数学与信息科学学院院长。 
2004年10月任西北师范大学校长助理。 
2007年任西北师范大学副校长。 
2012年12月起任西北师范大学校长 

 

主要荣誉: 


1994年获甘肃省高校青年教师成才奖; 
1994年被评为甘肃省劳动模范, 
1995年被评为甘肃省省属高校跨世纪学科带头人; 
1995年被评为全国先进工作者; 
1996年享受政府特殊津贴; 
1997年被评为国家“中青年有突出贡献专家”; 
1997年被评为甘肃省十大杰出青年; 
1997年入选由国家教委、人事部等七家单位组织的“百千万人才工程”第一、二层次; 
1998年被评为甘肃省优秀专家; 
2000年获得教育部高等学校骨干教师资助计划资助, 
2002年获教育部高等学校优秀青年教师教学科研奖。 
2010年入选甘肃省领军人才第一层次。 

 

科研项目:

 
1.主持国家自然科学基金项目三项。 
2.主持完成教育部高等学校骨干教师资助计划项目一项。 
3.主持甘肃省自然科学基金项目三项。 
4.参与教育部重大科技项目培育项目一项。 
5.参与完成国家自然科学基金项目两项(第二完成人)。 
专著或参编学术著作 
1.在科学出版社出版专著《A Homological approach to the Theory of Monoids》(和Javed Ahsan教授合著,本人为第二作者)、《半群的S-系理论》两部。 
2.在高等教育出版社出版面向21世纪课程教材《高等代数》一部。 

 

部分论文: 


1. Zhang, Chunxia; Wang, Limin; Liu, Zhongkui, Gorenstein homological dimensions of complexes with respect to a semidualizing module. Comm. Algebra 42 (2014), no. 6,2684–2703. 
2. Wu, Dejun; Liu, Zhongkui, Vanishing of Tate cohomology and Gorenstein injective dimension. Comm. Algebra 42 (2014), no. 5, 2181–2194. 
3. Lu, Bo; Liu, Zhongkui, Cartan-Eilenberg complexes with respect to cotorsion pairs. Arch. Math. (Basel) 102 (2014), no. 1, 35–48. 
4. Ren, Wei,; Liu, Zhongkui, , A Quillen model structure approach to homological dimensions of complexes. J. Algebra Appl. 13 (2014), no. 3, 1350106, 15 pp. 
5. Ren, Wei; Liu, Zhongkui, Cotorsion dimension of unbounded complexes.Comm. Algebra 41 (2013), no. 11, 4378–4392. 
6. Yang, Gang; Liu, Zhongkui; Liang, Li, Ding projective and Ding injective modules. Algebra Colloq. 20 (2013), no. 4, 601–612. 
7. Wang, Zhanping; Liu, Zhongkui, Complete cotorsion pairs in the category of complexes. Turkish J. Math. 37 (2013), no. 5, 852–862. 
8. Yang, Gang; Liu, Zhongkui; Liang, Li, On Gorenstein flat preenvelopes of complexes. Rend. Semin. Mat. Univ. Padova 129 (2013), 171–187. 
9. Zhang, Chunxia; Wang, Limin; Liu, Zhongkui Gorenstein homological dimensions and Auslander categories with respect to a semidualizing module. J. Math. Res. Appl. 33(2013), no. 3, 297–311. 
10. Lu, Bo; Liu, Zhongkui, Relative injectivity and flatness of complexes. Kodai Math. J. 36 (2013), no. 2, 343–362. 
11. Wei, Ren; Liu, Zhongkui; Gang, Yang, Derived categories with respect to Ding modules. J. Algebra Appl. 12 (2013), no. 6, 1350021, 14 pp. 
12. Yang, Xiaoyan; Liu, Zhongkui, DG-projective, injective and flat complexes.Algebra Colloq. 20 (2013), no. 1, 155–162. 
13. Dejun, Wu; Liu, Zhongkui, On restricted injective dimensions of complexes.Comm. Algebra 41 (2013), no. 2, 462–470. 
14. Yang, Gang; Liu, Zhongkui; Liang, Li, Model structures on categories of complexes over Ding-Chen rings. Comm. Algebra 41 (2013), no. 1, 50–69. 
15. Yang, Xiaoyan; Liu, Zhongkui, V-Gorenstein projective, injective and flat modules. Rocky Mountain J. Math. 42 (2012), no. 6, 2075–2098. 
16. Liu, Zhongkui, Preservation of quasi-isomorphisms of complexes. Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 12, 2489–2500. 
17. Lu, Bo; Liu, Zhongkui, IFP-flat dimensions and IFP-injective dimensions.Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 6, 2085–2095. 
18. Wang, Zhanping; Liu, Zhongkui, Gorenstein cotorsion and flat complexes. J. Algebra Appl. 11 (2012), no. 4, 1250068, 14 pp. 
19. Yang, Gang; Liu, Zhongkui, Gorenstein flat covers over GF-closed rings. Comm. Algebra 40 (2012), no. 5, 1632–1640. 
20. Yang, Gang; Liu, Zhongkui, Covers and envelopes of complexes. Comm. Algebra 40 (2012), no. 2, 531–541. 
21. Lu, Bo; Liu, Zhongkui, IFP-flat modules and IFP-injective modules. Comm. Algebra 40 (2012), no. 2, 361–374. 
22. Yang, Gang; Liu, Zhongkui, Stability of Gorenstein flat categories. Glasg. Math. J. 54 (2012), no. 1, 177–191. 
23. Yang, Xiaoyan; Liu, Zhongkui, n-flat and n-FP-injective modules. Czechoslovak Math. J. 61(136) (2011), no. 2, 359–369. 
24. Wang, Zhanping; Liu, Zhongkui, FP-injective complexes and FP-injective dimension of complexes. J. Aust. Math. Soc. 91 (2011), no. 2, 163–187. 
25. Yang, Gang; Liu, Zhongkui, Cotorsion pairs and model structures on Ch(R).Proc. Edinb. Math. Soc. (2) 54 (2011), no. 3, 783–797. 
26. Zhao, Renyu; Liu, Zhongkui, Generalized inverse power series modules. Comm. Algebra 39 (2011), no. 8, 2779–2797. 
27. Ahsan, Javed; Liu, Zhongkui,; Shabir, Muhammad Some homological characterizations of semigroups and semirings. Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 10, 2065–2072. 
28. Wang, Zhanping; Liu, Zhongkui Some covers and envelopes in the chain complex category of R-modules. J. Aust. Math. Soc. 90 (2011), no. 3, 385–401. 
29. Yang, Xiaoyan; Liu, Zhongkui, Gorenstein projective, injective, and flat complexes. Comm. Algebra 39 (2011), no. 5, 1705–1721. 
30. Liu, Zhongkui; Zhang, Chun Xia, Gorenstein projective dimensions of complexes. Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 7, 1395–1404. 
31. Yang, Shizhou; Song, Xuemei; Liu, Zhongkui, Power-serieswise McCoy rings.Algebra Colloq. 18 (2011), no. 2, 301–310. 
32. Yang, Xiaoyan; Liu, Zhongkui, Ω-Gorenstein projective, injective and flat modules. Algebra Colloq. 18 (2011), no. 2, 273–288. 
33. Wang. Zhanping,; Zhongkui, Liu, Gorenstein flat complexes over coherent rings with finite self-FP-injective dimension. Comm. Algebra 38 (2010), no. 11, 4362–4374. 
34. Liu, Zhongkui; Ahsan, Javed, On relative quasi-projective acts over monoids.Arab. J. Sci. Eng. ASJE. Math. 35 (2010), no. 2D, 225–233. 
35. Yang, Xiao Yan; Liu, Zhong Kui C-Gorenstein projective, injective and flat modules. Czechoslovak Math. J. 60(135) (2010), no. 4, 1109–1129. 
36. Wang, Zhanping; Liu, Zhongkui, Complexes of Gorenstein flat modules and Gorenstein cotorsion modules. Comm. Algebra 38 (2010), no. 10, 3752–3766. 
37. Yang, Gang; Zhongkui, Liu, Notes on generalized Hopfian and weakly co-Hopfian modules. Comm. Algebra 38 (2010), no. 10, 3556–3566. 
38. Liu, Zhong Kui; Zhang, Wen Hui, Principal quasi-Baerness of formal power series rings. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2231–2238. 
39. Liu, Zhongkui; Yang, Xiaoyan, On annihilator ideals of skew monoid rings.Glasg. Math. J. 52 (2010), no. 1, 161–168. 
40. Yang, Xiaoyan; Liu, Zhongkui, FP-injective complexes. Comm. Algebra 38(2010), no. 1, 131–142. 
41. Liu, Zhongkui; Yang, Xiaoyan, Gorenstein projective, injective and flat modules. J. Aust. Math. Soc. 87 (2009), no. 3, 395–407. 
42. Guo, Li; Liu, Zhongkui, Rota-Baxter operators on generalized power series rings. J. Algebra Appl. 8 (2009), no. 4, 557–564. 
43. Qiao, Husheng; Liu, Zhongkui, On the homological classification of pomonoids by their Rees factor S-posets. Semigroup Forum 79 (2009), no. 2, 385–399. 
44. Zhao, Renyu; Liu, Zhongkui, Extensions of McCoy rings. Algebra Colloq. 16(2009), no. 3, 495–502. 
45. Yang, Gang; Liu, Zhongkui, On generalizations of Fitting modules. Indian J. Math. 51 (2009), no. 1, 85–99. 
46. Liu, Zhongkui; Chunxia, Zhang, Gorenstein injective complexes of modules over Noetherian rings. J. Algebra 321 (2009), no. 5, 1546–1554. 
47. Zhao, Renyu; Liu, Zhongkui, Artinness of generalized Macaulay-Northcott modules. Comm. Algebra 37 (2009), no. 2, 525–531. 
48. Liu, Zhongkui; Qiao, Husheng, Extensions of left APP-rings. Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 305–312. 
49. Zhongkui, Liu; Xiaoyan, Yang, Left APP-property of formal power series rings.Arch. Math. (Brno) 44 (2008), no. 3, 185–189. 
50.Yang, Xiaoyan; Liu, Zhongkui, Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), no. 7, 2659–2674. 
51. Zhao, Renyu; Liu, Zhongkui, Special properties of modules of generalized power series. Taiwanese J. Math. 12 (2008), no. 2, 447–461. 
52. Liu, Zhongkui; Zhang, Wenhui, Quasi-Armendariz rings relative to a monoid.Comm. Algebra 36 (2008), no. 3, 928–947. 
53. Yang, Gang; Liu, Zhongkui, On strongly reversible rings. Taiwanese J. Math.12 (2008), no. 1, 129–136. 
54. Liang, Li; Wang, Limin; Liu, Zhongkui, On a generalization of semicommutative rings. Taiwanese J. Math. 11 (2007), no. 5, 1359–1368. 
55. Qiao, Husheng; Limin, Wang; Zhongkui, Liu, On flatness properties of torsion free right Rees factor acts. Semigroup Forum 73 (2006), no. 3, 470–474. 
56. Liu, Zhongkui; Zhao, Renyu, A generalization of PP-rings and p.q.-Baer rings.Glasg. Math. J. 48 (2006), no. 2, 217–229. 
57. Liu, Zhong Kui, Triangular matrix representations of rings of generalized power series. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989–998. 
58. Liu, Zhongkui; Zhao, Renyu, On weak Armendariz rings. Comm. Algebra 34(2006), no. 7, 2607–2616. 
59. Liu, Zhongkui; Ahsan, Javed, The Tor-groups of modules of generalized power series. Algebra Colloq. 12 (2005), no. 3, 477–484. 
60. Liu, Zhongkui, Armendariz rings relative to a monoid. Comm. Algebra 33(2005), no. 3, 649–661. 
61. Shi, Xiaoping; Liu, Zhongkui; Wang, Fanggui; Bulman-Fleming, Sydney, Indecomposable, projective, and flat S-posets. Comm. Algebra 33 (2005), no. 1, 235–251. 
62. Liu, Zhongkui, Special properties of rings of generalized power series. Comm. Algebra 32 (2004), no. 8, 3215–3226. 
63. Zhongkui, Liu, The ascending chain condition for principal ideals of rings of generalized power series. Comm. Algebra 32 (2004), no. 9, 3305–3314. 
64. Liu, Zhong Kui; Ahsan, Javed, On (ℵ,U)-coherence of modules and rings. Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 105–114. 
65. Liu, Zhong Kui, Principal quasi-Baerness of Laurent series rings. (Chinese) Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 6, 1107–1112. 
66. Zhongkui, Liu, Baer rings of generalized power series. Glasg. Math. J. 44(2002), no. 3, 463–469. 
67. Liu, Zhongkui, A note on principally quasi-Baer rings. Comm. Algebra 30(2002), no. 8, 3885–3890. 
68. Liu, Zhong Kui; Fan, Yuan, Co-Hopfian modules of generalized inverse polynomials. Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 431–436. 
69. Liu, Zhongkui, On X-extending and X-continuous modules. Comm. Algebra 29(2001), no. 6, 2407–2418. 
70. Liu, Zhongkui, Injectivity of modules of generalized inverse polynomials.Comm. Algebra 29 (2001), no. 2, 583–592. 
71. Liu, Zhongkui, A note on Hopfian modules. Comm. Algebra 28 (2000), no. 6,3031–3040. 
72. Liu, Zhongkui; Cheng, Hui, Quasi-duality for the rings of generalized power series. Comm. Algebra 28 (2000), no. 3, 1175–1188. 
73. Liu, Zhongkui, Hermite and PS-rings of Hurwitz series. Comm. Algebra 28(2000), no. 1, 299–305. 
74. Liu, Zhongkui, Endomorphism rings of modules of generalized inverse polynomials. Comm. Algebra 28 (2000), no. 2, 803–814. 
75. Liu, Zhongkui, On n-root closedness of generalized power series rings over pairs of rings. J. Pure Appl. Algebra 144 (1999), no. 3, 303–312. 
76. Liu, Zhongkui; Ahsan, Javed Co-semisimple modules and generalized injectivity. Taiwanese J. Math. 3 (1999), no. 3, 357–366. 
77. Liu, Zhongkui; Li, Fang, PS-rings of generalized power series. Comm. Algebra26 (1998), no. 7, 2283–2291. 
78. Liu, Zhongkui, On almost locally Noetherian modules and generalized S3I-modules. Comm. Algebra 25 (1997), no. 6, 1883–1891. 
79. Liu, Zhongkui, Monoids over which all flat left acts are regular. J. Pure Appl. Algebra 111 (1996), no. 1-3, 199–203. 
80. Liu, Zhongkui, Rings with flat left socle. Comm. Algebra 23 (1995), no. 5,1645–1656. 
81. Liu, Zhongkui, Monoids over which all regular left acts are flat. Semigroup Forum 50 (1995), no. 2, 135–139. 
82. Liu, Zhongkui, Characterization of monoids by condition (P) of cyclic left acts.Semigroup Forum 49 (1994), no. 1, 31–39. 
83. Liu, Zhongkui; Yang, Yong Bao, Monoids over which every flat right act satisfies condition (P). Comm. Algebra 22 (1994), no. 8, 2861–2875. 
84. Liu, Zhongkui, A characterization of regular monoids by flatness of left acts.Semigroup Forum 46 (1993), no. 1, 85–89.