云亭数学讲坛2022第45讲——杨志坚教授

文章来源:数学与统计学院发布日期:2022-07-09浏览次数:285


应学院邀请,郑州大学杨志坚教授将作线上学术报告。

报告题目:Exponential attractor for the viscoelastic wave model with time-dependent memory kernels

报告摘要:In this talk, we are concerned with the exponential attractors for the viscoelastic wave model with time-dependent memory kernel which is used to model aging phenomena of the material. Conti et al (Am J Math 140(2): 349-389, 2018a; Am J Math 140(6): 1687-1729, 2018b) recently provided the correct mathematical setting for the model and a well-posedness result within the novel theory of dynamical systems acting on time-dependent spaces, recently established by Conti, Pata and Temam (J Differ Equ 255: 1254-1277, 2013), and proved the existence and the regularity of the time-dependent global attractor. In this work, we further study the existence of the time-dependent exponential attractors as well as their regularity. We establish an abstract existence criterion via quasi-stability method introduced originally by Chueshov and Lasiecka (J Dyn Differ Equ 16: 469-512, 2004), and on the basis of the theory and technique developed in (2018a, b) we further provide a new method to overcome the difficulty of the lack of further regularity to show the existence of the time-dependent exponential attractor. And these techniques can be used to tackle other hyperbolic models.

报告时间:202278日下午2:30

报告地点:腾讯会议号234170179

邀 请 人:马巧珍 教授

届时欢迎广大师生参与交流!

 

报告人简介

杨志坚,郑州大学理学博士,日本九州大学数理学博士,郑州大学2级教授,博士生导师,河南省跨世纪学术技术带头人美国 《Mathematical Reviews》评论员,《Journal of Partial DifferentialEquations》期刊编委。主要研究非线性发展方程的整体适定性及对应的无穷维耗散动力系统的长时间动力学行为。主持完成4项国家自然科学基金面上项目;已在《J. Differential Equations》、《Nonlinearity》、《Commun. Contemp. Math.》、《J. Dyn. Differ. Equ.》、《Discrete Contin. Dyn. Syst.》等国内外SCI期刊上发表研究论文90篇。获得河南省科技进步二等奖1项。