应中心和学院邀请,日本福冈大学成庆明教授于8月11日来访中心并作学术报告,信息如下:
报告人:成庆明 教授(日本福冈大学)
报告题目:A conjecture on compact vacuum static spaces
报告摘要: An n-dimensional Riemannian manifold (M,g) is called a vacuum static space if there exists a non-constant smooth function f such that f_ij=f(R_ij-R/(n-1) g_ij), where R_ij, g_ij and R denote components of the Ricci curvature tensor, the metric tensor g and the scalar curvature. It is well-known that Fischer and Marsden proposed the following FM Conjecture:an n-dimensional compact vacuum static space is Einstein.
In this talk, we will consider n-complete vacuum static spaces and to study n-dimensional complete vacuum static spaces. In particular, we give a complete classification for 3-dimensional complete vacuum static spaces with non-negative scalar curvature if the squared norm of the Ricci curvature tensor is constant.
报告时间:2023年8月11日下午2:30
报告地点:云亭校区致勤楼C区101(学术报告厅)
邀请人:刘建成 教授
届时欢迎广大师生参与交流!
报告人简介:
成庆明,日本福冈大学教授,博士生导师,日本数学会几何组负责人。成庆明教授主要从事微分几何学的研究,对中日微分几何的学术交流做出了重要贡献。成庆明教授在Laplace算子特征值研究、球面中极小超曲面的陈省身猜想、λ-超曲面等方面做出了重要研究成果。
甘肃省数学与统计学基础学科研究中心
数学与统计学院