云亭数学讲坛2024第44讲——荣耀华教授

文章来源:数学与统计学院发布日期:2024-10-16浏览次数:11

应学院邀请,北京工业大学数学统计学与力学学院荣耀华教授将在线作学术报告。

报告题目:Kernel Cox partially linear regression: building predictive models for cancer patients' survival

报告摘要:Wide heterogeneity exists in cancer patients' survival, ranging from a few months to several decades. To accurately predict clinical outcomes, it is vital to build an accurate predictive model that relates patients' molecular profiles with patients' survival.With complex relationships between survival and high-dimensionalmolecular predictors, it is challenging to conduct non-parametric modeling and irrelevant predictors removing simultaneously. In this paper, we build a kernel Cox proportional hazards semi-parametric model and propose a novel regularized garrotized kernel machine (RegGKM) method to fit the model. We use the kernel machine method to describe the complex relationship between survival and predictors, while automatically removing irrelevant parametric and non-parametric predictors through a LASSO penalty. An efficient high-dimensional algorithm is developed for the proposed method. Comparison with other competing methods in simulation shows that the proposed method always has better predictive accuracy. We apply this method to analyze a multiple myeloma dataset and predict patients' death burden based on their gene expressions. Our results can help classify patients into groups with different death risks, facilitating treatment for better clinical outcomes.


报告时间:20241025(周五)上午9:00

报告地点:腾讯会议号670-868-172

邀 请 人:田玉柱副教授 张建东副教授

届时欢迎广大师生参与交流!


报告人简介:


 荣耀华,北京工业大学数学统计学与力学学院教授、硕士生导师,兼全国工业统计教学研究会理事、北京大数据协会理事等、曾获北京市委组织部优秀人才青年骨干称号。2014年于中国人民大学统计学院获经济学博士学位,师从袁卫教授。研究方向为高维数据分析、非参数和半参数统计建模等。在《Statistics in Medicine》等知名国际期刊及《统计研究》、《中国高教研究》等国内权威期刊公开发表论文30余篇,担任期刊匿名审稿人。作为负责人先后主持承担国家自然科学基金青年项目、教育部人文社会科学研究规划基金、全国统计科学研究重点项目、北京市委组织部优秀人才青年骨干项目、北京市教委科技计划一般项目、中国博士后科学基金一等资助等多项国家级和省部级课题,作为项目骨干参与国家社会科学基金重大项目、国家自然科学基金面上项目等多项。获得国家一级学会中国物流与采购联合会科技进步二等奖(国务院奖励办备案)、多次获得北京高校第十二届青年教师教学基本功比赛论文优秀奖、北京生物医学统计与数据管理研究会“青年优秀论文奖”等。



甘肃省数学与统计学基础学科研究中心

数学与统计学院

2024年10月16日