报告题目:On the optimalwell-posedness of the compressible Navier-Stokes equations in critical Besov spaces
报告摘要:We consider the Cauchy problem to the barotropic compressible Navier-Stokes equations. We obtain optimal local well-posedness in the sense of Hadamard in the critical Besov space. The main new result is the continuity of the solution maps, which was not proved in previous works. To prove our results, we derive a new difference estimate in $L_t^1L_x^\infty$. Then we combine the method of frequency envelope but in the transport-parabolic setting and the Lagrangian approach for the compressible Navier-Stokes equations. As a by-product, the Lagrangian transform is a continuous bijection and hence bridges the Eulerian and the Lagrangian methods. This is a joint work with Zihua Guo (Monash University) and Zeng Zhang (Wuhan University of Technology).
报告时间:2025年5月16日上午8:00
报告地点:数学与统计学院学术报告厅D07
邀 请 人:孙小春 教授 孙晋易 教授
届时欢迎广大师生参与交流!
报告人简介
杨明华,江西财经大学信息管理与数学学院教授、博士生导师,研究方向调和分析及其在偏微分方程上的应用。2010年本科毕业于西北师范大学数学与应用数学专业,2016年博士毕业于中山大学基础数学专业, 澳大利亚Monash University访问学者、入选江西省主要学科学术和技术带头人培养计划青年人才。已在J. Differential Equations、J. Dynam. Differential Equations、Sci. China Math.等国际国内杂志上发表近30篇SCI学术论文,主持国家自然科学基金青年科学基金项目、地区科学基金项目等多项课题。
甘肃省数学与统计学基础学科研究中心
数学与统计学院