云亭数学讲坛2025第43讲——高金城 副教授

文章来源:数学与统计学院发布日期:2025-06-17浏览次数:10


 应数学与统计学院邀请,中山大学高金城副教授将来我院作学术报告。

报告题目:Global uniform regularity for the 3D incompressible MHD equations with slip boundary condition near a background magnetic field  

报告摘要:Motivated by applications in geophysics, the MHD system considered here is anisotropic with small dissipation in the $x_2$ and $x_3$ direction and small vertical magnetic diffusion. By exploiting the enhanced dissipation due to the background magnetic field and introducing four layers of energy functionals, we are able to establish global-in-time uniform bounds that are independent of viscosity in the $x_2$ and $x_3$ direction and vertical resistivity. Our method here constructs a two-tier energy method that couples the boundedness of conormal derivative estimate to the decay of tangential derivative estimate, the latter of which is necessary to balance out the growth of conormal derivative. These global conormal regularity and decay rate estimates allow us to pass to the limit and obtain the explicit long-time convergencerate to the incompressible MHD equation with no dissipation in the $x_2$ and $x_3$ direction and vertical magnetic diffusion.

报告时间:2025620日上午10:00

报告地点:致勤楼D07

邀 请 人:孙晋易 教授

届时欢迎广大师生参与交流!

报告人简介

 高金城中山大学博士研究生导师(逸仙学者),获得科技部重点研发青年科学家项目和广东特支计划青年拔尖人才项目等资助,主要从而流体力学相关方程的理论与应用研究,在时间衰减估计、适定性和粘性消失极限方程取得了一些好的研究成果,发表于《Calc.Var. Partial Differential Equations》《Ann. Inst. H. Poincaré C Anal.NonLinéaire》《J. Differential Equations》等权威期刊。


数学与统计学院

甘肃省数学与统计学基础学科研究中心

2025年6月17日